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Study Populations. Previously, we reported on gene expression
profiles of tumors from a series of 295 patients with stage I/II
breast cancer (NKI295) treated at the Netherlands Cancer
Institute between 1984 and 1995 (1). The clinical data used for
the earlier publications was updated until January 2001. For this
study, all patient charts were reviewed and clinical data were
updated until January 1, 2005. The median follow-up times are
10.2 years for all patients and 12 years for patients who were
alive. Distant metastasis was analyzed as first event only. If a
patient developed a local recurrence, axillary recurrence, con-
tralateral breast cancer, or a second primary cancer (except for
non-melanoma skin cancer), the patient’s data were censored at
this time. An ipsilateral supraclavicular recurrence shortly pre-
ceded distant metastasis in all but one patient; therefore, these
cases were not censored at time of ipsilateral supraclavicular
recurrence. There were 161 patients who underwent breast
conservation that consisted of adjuvant external-beam radiation
primarily to 50 Gy (mean, 50.2 Gy; range, 50–54 Gy) followed by
a boost (89% of patients) using photons, electrons, or iridium Ir
192 (mean, 18 Gy; range, 14–26 Gy). There were 110 patients
who received adjuvant chemotherapy, which primarily consisted
of cyclophosphamide/methotrexate/5-f luorouracil. Two patients
were treated with 5-fluorouracil/epirubicin/cyclophosphamide.
Table S3 lists the patient characteristics.

Details on the clinical characteristics of other patients and
microarray data used in the study along with accession numbers
have been described. References for all microarray data used in
this study are listed in Table S8. Available patient characteristics
for the patient data sets used in the validation studies are given
in Tables S5 and S7. For more information on the patients used
in the validation studies, see Validation of the IRDS.

Cell Line and Animal Experiments. For in vivo experiments, nude
mice were treated by i.p. injection with 6 mg/kg of doxorubicin.
For lung metastasis assays, gross lung lesions were scored after
necropsy at 9 to 12 weeks. In vitro growth inhibition was
measured by MTS assay and cell death was measured by subG1
content using flow cytometry and confirmed by PARP cleavage
assay (Invitrogen). For stable gene knockdowns, Nu61 was
retrovirally transduced with either the pSIREN-RetroQ-DsRed-
Express (Clontech) to target STAT1 by shRNA (9). The
pSHAG-Magic v2.0 vector (Open Biosystems) was used to
independently target STAT1 and to target IFIT1 and ISG15 (see
Table S10 for sequences). For STAT1 over-expression, the
SKBR3 human breast cancer cell line was transduced with the
pQCXIP retroviral vector (Clontech) containing a human
STAT1� cDNA.

Determination of Clinical Information, Prognostic Marker Status, and
Risk Stratification. Most of the clinical and pathological informa-
tion for the 295 patients has been previously published (2).
Molecular subtype assignments are from Fan et al. (3). Estima-
tion of Her2 amplicon expression using the microarray data were
done using the probes for Her2/ERBB2 and GRB7. For this,
hierarchical clustering using Euclidean distance as the distance
metric and complete linkage was used, and the resulting tree was
cut to give three groups. Cutting the tree at this level gave the
highest R-index of 0.867, which is a measure of robustness (4).
Clusters 2 and 3 demonstrated the highest expression levels for
Her2/ERBB2 and GRB7 and included 26% of the population,
which is the expected approximate frequency for Her2 over-

expression by FISH and/or IHC. Survival analysis comparing
clusters 2 and 3 versus cluster 1 revealed an expected difference
in metastasis-free survival. Therefore, patients in clusters 2 and
3 were used for an estimate for Her2 over-expression. Stratifi-
cation into clinical risk groups was based on the 2005 St. Gallen
consensus criteria (5) and using the microarray data for Her2
over-expression. Data on lymphovascular invasion were not
available. For AOL 10-year breast cancer mortality estimates,
clinicopathological factors were entered into the Web-based
tool, version 8.0. For co-morbidity status, ‘‘average for age’’ was
used.

Hierarchical clustering of clinical, pathological, and genomic
markers was performed using the Heatplus package 1.2.0 (by
Alexander Ploner) for the R language and environment for
statistical programming, versions 2.31 to 2.4.1 (R Development
Core Team, R Foundation for Statistical Computing, Vienna,
Austria). Statistical association between various prognostic
markers and risk groups was calculated with a �2 test and/or
Cramer V statistic using the vcd package 1.0.4 for R (by David
Meyer, Achim Zeileis, and Kurt Hornik).

Gene Set Enrichment Analysis of IRDS with SF2. Radiation resistance
data for 34 of the NCI60 cancer cell lines has been previously
described (6). Affymetrix U133A microarray data processed
using the RMA method was downloaded from the NCI/LMP
Genomics and Bioinformatics group (http://discover.nci.nih.gov/
cellminer/home.do). Gene set enrichment analysis was per-
formed using GSEA 2.0 downloaded from the GSEA Web site
(http://www.broad.mit.edu/gsea/index.html). A Pearson correla-
tion to the SF2 was used as the metric. Permutation of samples
was used to calculate significance and false discovery rate.
Analysis was performed by using all probe sets or by collapsing
probe sets to unique gene symbols with similar results. Similar
results were obtained with gene set analysis using the GSA 1.0
package for R (by Brad Efron and R. Tibshirani). The max-mean
statistic was used and re-standardization was performed using all
genes in the data set.

Analysis of IRDS Expression in Primary Human Tumors. The human
cell line SCC61 was xenografted into the flank of immunocom-
promised nude mice and in vivo selected for resistance to DNA
damage as previously described (7). This selection resulted in the
resistant Nu61 subline, which was compared with the SCC61 cell
lines for differential microarray gene expression analysis using
the Affymetrix U133A GeneChip. From this, a 54-gene signature
associated with DNA damage resistance was developed as
previously described, and duplicate probes were removed to give
a final list of 49 unique genes (Table S9). Using this gene list, the
average signal intensity for each gene was computed from
triplicate samples from SCC61 and Nu61 and transformed into
log base 2.

To relate a cell line-derived gene expression signature to
primary human tumor samples, we used similar methods de-
scribed in our previous work (8). For non-Affymetrix platforms
(i.e., breast, head and neck), the corresponding probes for each
of the 49 IRDS genes were matched based on gene symbols and
UniGene accession numbers and duplicate probes removed
(Table S9). Using the IRDS genes, k-means clustering was
performed using TIGR MultiExperiment Viewer version 4.0 (9)
for each of the microarray data sets with a k value of 2 and
requiring 90% consensus for each of the two clusters after 500
runs. The average signal intensity for each of the IRDS genes was
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then averaged for each of the two consensus clusters. These
centroids were then compared with the Nu61 and SCC61 cell line
centroids by using a Pearson product moment correlation coef-
ficient. The patients in the group with the centroid positively
correlating to the Nu61 centroid were defined as IRDS(�) and
those in the group positively correlating with the SCC61 centroid
were defined as IRDS(�). The few patients not assigned to a
consensus cluster were considered IRDS(�).

The gene expression profile of the IRDS genes for each
patient sample from the various primary tumor types was also
directly compared with the IRDS gene profiles of Nu61 samples
(n � 6) and to the profiles of SCC61 samples (n � 6) by rank
correlation analysis on the median centered data. The difference
between the mean rank correlation to Nu61 and to SCC61 was
used as a test statistic. A null distribution of the test statistic for
each patient sample was generated by 1,000 random permuta-
tions of the Nu61 and SCC61 class labels, and the distribution-
free P value for each sample was calculated by comparison to the
null distribution. The median P value for each tumor type was
less than 0.0001. To compare results from the rank correlation
analysis to the k-means support clustering method, samples were
assigned as IRDS(�) using the rank analysis if the mean rank
correlation was closer to Nu61 than to SCC61 and IRDS(�) if
it was closer to SCC61. Although results from both approaches
gave highly similar class assignment results, we chose the k-
means support clustering method for the breast cancer data. Our
preference for this method is because we did not want to impose
potential idiosyncrasies of the cell line data on the class assign-
ment process and because of our previous success with the
method.

Determination of IRDS Status in Breast Cancer. The unsupervised
clustering method described earlier was used to define IRDS
status for the 78 patients with breast cancer (NKI78) shown in
Fig. 3A and Fig. S1. However, this method is not well suited for
classification of new samples because it would require a re-
analysis of all samples. Therefore, to classify the new samples
from the NKI295 data set, we wished to develop an IRDS
classifier using supervised class prediction methods trained on
the NKI78 data set with the k-means-derived IRDS class as-
signments. We chose to develop two different classifiers.

Support Vector Machine Classifier. In the first approach, only the 49
IRDS genes were used to develop a support vector machine
(SVM) classifier. For this, BRB ArrayTools 3.4.1 and 3.5.0
Beta�1 developed by Richard Simon and Amy Peng Lam (http://
linus.nci.nih.gov/BRB-ArrayTools.html) was used with a linear
kernel and default tuning parameters and misclassification
weights. Our previous work that developed a cell line signature
into a clinical classifier using similar approaches as described
here suggests that a SVM worked marginally better than other
methods such as nearest centroid or k-nearest neighbor (8);
however, there is no strong rationale for this, and this decision
was primarily arbitrary. Leave-one-out cross-validation resulted
in 96% prediction accuracy. Of the 295 patients, 61 are from the
78-patient data set previously described (1). Therefore, 235
unique patients were classified using the SVM classifier and the
original IRDS status from the k-means clustering was used for
60 overlapping patients. (Sample 54 from the NKI78 data set had
a large proportion of missing values as previously described [8]
and was not included in the k-means clustering; hence there were
60 instead of 61 overlapping samples.) It is important to note
that, because clinical data were not used to model IRDS class
membership, this procedure does not bias analysis of clinical
outcome using IRDS status as a factor.

Top Scoring Pairs Classifier. Statistical challenges, such as normal-
ization issues and parameter tuning used in complex classifica-

tion methods, are potential obstacles to the routine use of gene
expression signatures in clinical management. We were moti-
vated to implement a classifier that could facilitate cross-
platform use both for validation studies and for clinical appli-
cation. The TSP classifier (10, 11) has many desirable properties
for this purpose. This method uses few genes, has simple decision
rules, and is parameter-free because it measures relative gene
expression values from pair-wise comparisons.

Using the NKI78 breast cancer patient data set, we used the
implementation provided by BRB-ArrayTools 3.5.0 Beta�1 to
train a TSP classifier for the k-means-derived IRDS class
assignments. Unlike with the SVM classifier, the TSP algorithm
selects for gene pairs, necessitating genes besides the 49 IRDS
genes. Allowing for a false discovery of only one gene with 99%
confidence, there are 162 genes that are differentially expressed
between IRDS(�) and IRDS(�) tumors. Although 22 of the 49
IRDS genes are among these 162 genes, even with stringent
filtering, the TSP algorithm would likely select gene pairs that
did not contain IRDS genes. Indeed, when either no filtering was
used or a variance and/or fold change filter was applied, some of
the top pairs selected by the TSP method were devoid of an
IRDS gene. Therefore, as our goal was not gene discovery and
we wanted to avoid potential over-fitting or over-filtering, we
restricted the TSP algorithm to using the 49 IRDS genes along
with the ‘‘intrinsic’’ breast cancer genes (12). The intrinsic breast
cancer genes are 534 genes used to define the molecular subtypes
reported by Perou and colleagues (20). From their work, these
genes were derived from unsupervised class discovery and
showed little variation within the same tumor but high variation
between different tumors. The intrinsic genes have been shown
to discriminate the different subtypes across different microar-
ray studies and platforms. There were 635 intrinsic breast cancer
genes on the NKI78 Agilent microarray platform (duplicate
probes were not removed). This was combined with the 49 IRDS
genes and probes with missing values in more than one sample
were excluded, leaving 648 genes. Thus, we rationalized that the
intrinsic genes would be a small set of independent breast cancer
genes previously tested across different studies/platforms that
could be combined with the IRDS for gene pair selection by the
TSP method.

Using the NKI78 as a training set, we selected the number of
gene pairs to use by evaluating prediction accuracy using 10-fold
cross validation and evaluating an odd number of gene pairs
from one to 19. A plateau in prediction accuracy of �97% was
observed at seven gene pairs; therefore, seven gene pairs were
selected. Each gene pair contained an IRDS gene, with the
seventh gene pair containing two IRDS genes. For each gene
pair, the probability that the IRDS gene has an expression value
greater than the non-IRDS gene is greater for IRDS(�) sam-
ples. With gene pair seven, in which both genes were from the
IRDS, the probability that IFIT3 levels are greater than ZNF273
is greater in IRDS(�) samples, which is consistent with the cell
line data showing that ZNF273 is one of the minority of
down-regulated genes in the IRDS. A majority vote method was
used to train the TSP classifier, meaning that if four of seven
IRDS genes scored positive (i.e., had an expression value greater
than the non-IRDS gene in each pair), the sample would be
classified as IRDS(�). To assess the stability of these seven gene
pairs, we added Gaussian noise based on the calculated variance
of the training set and ran the TSP algorithm 100 times to select
for seven gene pairs. The data were perturbed by sampling from
a normal distribution with mean zero and variance equal to the
25th percentile of the calculated variance from the entire data
set, and adding this noise to a random sample of 10% of the
training set. We chose the 25th percentile rather than the median
because a significant proportion of genes were differentially
expressed. After 100 runs using the perturbed data sets, the
proportion of times each or both of the genes from the original
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seven gene pairs were selected was calculated. These results
demonstrated that the IRDS genes are reasonably stable and do
not significantly fall off until seven gene pairs. The non-IRDS
genes from each pair are less stable after the third pair as
non-IRDS genes from other pairs can substitute.

Comparison of Different Classifiers. As expected, classification of
the NKI295 data set based on the binary TSP classifier was very
similar to the SVM results (Cramer V statistic � 0.833). Using
an RSF analysis (discussed later), both binary classifiers pre-
dicted for metastasis risk after adjusting for other covariates and
interactions, and both improved outcome prediction as part of a
full model for patients who received adjuvant chemotherapy. In
patients who did not receive adjuvant chemotherapy, both binary
classifiers had little influence on prediction or accuracy. Thus,
although both methods gave highly similar results, we focused
our efforts on the TSP because of its clinically desirable prop-
erties of using few genes, having simple decision rules, and being
parameter-free.

The TSP IRDS Score. Because no clinical data were used in training
of either the binary TSP or SVM classifiers, the ability to scale
a classifier to clinical outcome could be useful to meet different
clinical goals. For example, for a therapy-predictive marker, one
could either identify patients most likely to be sensitive to
standard adjuvant therapy or patients who are most likely
resistant. The seven gene pairs used in the TSP IRDS classifier
naturally allows scaling for this purpose. Therefore, rather than
use majority vote for binary classification of IRDS status, we
used the number of gene pairs that scored positive (TSP IRDS)
in the survival and RSF analysis described in the next section.

Survival and RSF Analysis. To preliminarily test the hypothesis that
the TSP IRDS is a therapy-predictive marker rather than a
prognostic marker, a Cox proportional-hazards regression model
was used. In addition to standard clinicopathological factors, the
use of adjuvant chemotherapy and interaction terms was mod-
eled to test for an interaction between the TSP IRDS and the use
of adjuvant chemotherapy. The proportional-hazards assump-
tion of a Cox regression was tested to ensure that the time-
dependent coefficient �(t) has a slope of 0 (global P � 0.05).
Survival analysis was done using the Kaplan-Meier method and
the log-rank test. All analysis was done using the survival
package 2.26 for R (by T. Therneau and ported by T. Lumley).

RSF Analysis. Recently, there have been several reports on the
appropriateness of using a Cox proportional-hazards regression
model and reporting hazard ratios with P values to evaluate new
tumor markers (13–15). A hazard ratio with a significant P value
implies a relationship between the new marker and clinical
outcome when other markers remain constant, but it does not
directly address the issue of prediction, which is the primary
objective. Thus, it has been proposed that models with reason-
able assumptions be evaluated with standard markers with and
without the new marker of interest. Then, a concordance index
or an error rate is used to evaluate prediction accuracy to
determine how much the new marker of interest influences the
error rate. To apply this paradigm, we used an RSF method to
evaluate if the TSP IRDS improves upon outcome prediction.
An RSF involves constructing survival trees from bootstrap
samples using randomly selected covariates for tree splitting to
deliver an ensemble cumulative hazard estimate for survival. It
is virtually free of model assumptions and adjusts for each
covariate and potential interactions. The RSF also allows the
contribution of each covariate to the overall prediction accuracy
to be evaluated using an importance score, which measures the
change in prediction accuracy of the overall model when the
factor is not considered (this is done by permutation). For

analysis using RSF, we used randomSurvivalForest package 2.0
(by Hemant Ishwaran and Udaya B. Kogalur) for R. In general,
2,500 to 5,000 survival trees were evaluated. Each of the four
splitting rules was tested and the ‘‘logrankscore’’ was used based
on consistently better performance compared with the other
methods. The default number of predictors was randomly sam-
pled at each split. To estimate prediction accuracy, an out-of-bag
error rate (1 � Harrell concordance index) was averaged over 50
to 100 Monte Carlo runs. Importance scores were similarly
determined. Models considered included the TSP IRDS with
standard clinicopathological markers (i.e., age, tumor size, num-
ber of positive lymph nodes, grade, estrogen receptor status),
Adjuvant! Online 10-year breast cancer mortality risk, or risk
groups determined by St. Gallen classification or genomic
classifiers (e.g., NKI 70, wound, molecular subtypes). Partial
plots were used to evaluate the influence of each covariate on the
expected relative frequency of metastasis.

Determination of TSP IRDS Cut-Off and Survival Analysis. An impor-
tant clinical goal for a therapy-predictive marker is to identify
patients whose disease is likely sensitive to standard adjuvant
treatment to avoid over-treatment but also to minimize denying
patients with resistant disease more aggressive treatment. From
the RSF analysis of the TSP IRDS combined with standard
clinicopathological factors or risk groups, a distinct separation in
predicted metastasis risk with increasing TSP IRDS is observed
between scores less than two and scores of two or greater (Fig.
4 B and D). When the estimated standard errors are considered,
overlap is observed between scores of one and zero, and an
examination of the prediction error rate reveals that a score of
zero results in higher error than a score of one. Based on these
data, a TSP IRDS of less than two was used as a conservative
cut-off for Kaplan-Meier survival analysis to identify the patients
whose disease was most likely to be sensitive to adjuvant therapy.

The same TSP IRDS cut-off was used in multivariable Cox
regression models for importance score calculations along with
other covariates that were dichotomized, with the exceptions
being tumor size and age, which were treated as continuous
variables, and number of positive lymph nodes, if such informa-
tion was available. Importance scores and prediction error rates
were determined using out-of-bag samples. Importance scores
were calculated by a ‘‘noised-up’’ method whereby coefficients
for each variable was set to zero and the difference in prediction
error from out-of-bag samples was measured.

Validation of the IRDS. To validate the properties of the IRDS,
several independent breast cancer cohorts were assembled (see
Tables S5 and S7). Cohort A is comprised of 292 patients from
the Radcliffe, University of California San Francisco, and Stock-
holm data set who all received adjuvant chemotherapy and/or
radiation and was used to validate that the IRDS is a therapy
predictive marker for DNA damaging agents, i.e., adjuvant
chemotherapy and/or radiation. Recurrence-free survival was
used as the endpoint for patients treated with adjuvant chemo-
therapy and/or radiation and defined as either an LRF or a
distant failure as the first event. Distant metastasis-free survival
as a first event was used as the endpoint for patients treated with
adjuvant chemotherapy, and LRF as a first event was used for
patients treated with adjuvant radiation therapy. Cohort B was
used to test if the IRDS is specifically a therapy-predictive
marker for DNA damaging agents and consists of 277 patients
from the Loi data set who received only endocrine therapy for
adjuvant systemic treatment. Cohort C was used to validate that
the IRDS does not act as a prognostic marker. Analysis of
prognostic markers is best done in a manner that minimizes
potential influence of treatment on the endpoint studied. There-
fore, for cohort C, only 286 patients from the Rotterdam data set
who did not receive adjuvant systemic treatment were included,
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and distant metastasis-free survival was used as the endpoint.
For each of these assembled cohorts, all patients from each data
set with enough information were used. Patients were excluded
only if the analytic method does not support missing values.

For each data set, calculation of TSP IRDS scores was
performed as described for the NKI295 data set. Gene expres-
sion values were median centered. In cases in which there were
genes not expressed on the particular microarray platform, the
corresponding gene pair was omitted and the TSP IRDS score
was scaled from zero to seven. For the cross-institute validation
analysis, each of four data sets was used as a test set for either
a RSF or a Cox model trained on the other three. Importance
scores for each covariate were determined by the difference
between the error rate using the full model and the error rate
with the covariate omitted. Other methods that used random
daughter assignment for out-of-bag samples dropped down
in-bag survival trees later became available when prediction
using separate tests sets was used. In practice, both methods

generally yield similar results. For Cox regression, we used the
noised-up method. At least 100 to 1,000 Monte Carlo runs were
used for each test set and the importance score was averaged.
When using RSF, missing data were imputed. For Cox regres-
sion, missing data were excluded.

To provide average importance score values and estimate their
sampling variability, all breast cancer data sets from Table S8
were combined and overlapping patients were excluded. This
resulted in 1,573 patients. Both RSF and Cox models were
used. However, with RSF missing, data were imputed and
analysis was non-stratified. Because all possible variable in-
teractions were considered, treatment effect could be ex-
tracted. Importance scores were calculated by random daugh-
ter node assignment for out-of-bag samples dropped down
in-bag survival trees. In contrast, Cox models were stratified by
treatment and no interactions were included. Bootstrap means
and SEs for both importance scores and prediction error rates
were determined using at least 100 to 1,000 bootstrap sam-
plings with replacement.
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Fig. S1. Rank correlation analysis comparing IRDS gene expression profiles of primary human cancers versus Nu61/SCC61 and class assignment of 78 breast
tumors. (A) The gene expression profile of the IRDS genes for each patient sample from the indicated primary tumor types was compared with the IRDS gene
profiles of Nu61 samples and to the profiles of SCC61 samples by rank correlation analysis. The difference between the mean rank correlation to Nu61 and to
SCC61 was defined as the rank correlation difference (blue histogram) and was used as a test statistic. Positive values of the rank correlation difference represent
similarity to the Nu61 IRDS gene profiles and negative values represent similarity to SCC61. The Nu61 profile defines the IRDS(�) state and that of SCC61 defines
the IRDS(�) state. A null distribution of the test statistic was generated by random permutation of the Nu61 and SCC61 class labels. The distribution-free P value
for each sample was calculated by comparison to the null distributions. Shown are the null distributions (red) and the median P values for the indicated cancer
types. (B) The IRDS gene expression profiles for 78 patients with breast cancer along with the Nu61 and SCC61 IRDS centroid are shown in the heat map with
samples in columns and IRDS genes in rows. Orange is high gene expression and blue is low. The position of the Nu61 and the SCC61 centroids are indicated by
arrows. IRDS(�) and IRDS(�) class assignments were made by comparing each patient sample to the Nu61 and SCC61 IRDS gene profiles. Samples were assigned
as IRDS(�) if the mean rank correlation was closer to Nu61 than to SCC61 and IRDS(�) if it was closer to SCC61. Alternatively, k-means support clustering with
a k value of 2 was performed using the IRDS genes to divide the patient samples into two groups. The centroid of each group was compared with the Nu61 and
the SCC61 centroid. The group positively correlating with Nu61 was assigned as IRDS(�) and the group positively correlating with SCC61 was assigned as IRDS(�).
Results of each method are shown on the bottom of the heat map, with vertical black bars indicating IRDS(�) status. The correlation between the two methods
is 0.90.
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status is shown for the NKI295 data set. Each IRDS gene (delineated by red line) and its partner gene used in a pair-wise comparison are numbered in parentheses.
Each column is a primary tumor and each row is a gene, with orange representing high expression and blue low expression. The number of gene pairs that score
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is shown by hierarchical clustering using the NKI295 breast cancer data set. Each vertical tick represents a patient. The legend for the color codes for each group
is shown on the right of the heat map. The TSP IRDS score is displayed below the heat map. The association between classification by the indicated risk groups
and the TSP IRDS score is measured by a Cramer V statistic and shown on the left in parentheses (a value of 0 indicates no relationship and values from 0.20 to
0.49 indicate a moderate to substantial relationship). In general, worse prognosis has been reported for patients who are are wound signature (wound)-positive,
NKI 70-positive, at high risk per St. Gallen criteria, or belong to the ERBB2/Her2 (ErB) or Basal-like (Bas) molecular subtypes as compared to the luminal A (LuA)
subtype. Intermediate-risk subtypes include the luminal B (LuB) and normal-like (Norm) subtypes.
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Fig. S3. Partial plots of the influence of the TSP IRDS, standard clinicopathological markers, genomic markers, and risk groups on metastatic risk from
multivariable RSF models. The 110 patients treated with adjuvant chemotherapy (grouped beside green bar) and the 185 patients not treated with adjuvant
chemotherapy (grouped beside orange bar) from the NKI295 data set were separately analyzed using an RSF analysis as described in Fig. 4. The TSP IRDS was
combined with (A) standard clinicopathological factors or (B) clinical risk groups defined by the 2005 St. Gallen criteria or other gene expression signatures that
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show the expected relative frequency of patients developing metastasis as a function of each of the indicated covariates after adjusting for all other covariates
in the model. For continuous variables, the estimated risk is shown (red dot) along with a Lowess regression (black dashes) � 2SE (red dashes). Discrete variables
are shown by box-and-whisker plots with non-overlapping notches considered significant. The covariates are ordered from left to right by rank of their
importance score. See Fig. 4.
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Fig. S6. Cross-institute analysis of the IRDS as a therapy predictive marker for adjuvant chemotherapy and radiation. Patients who received either adjuvant
chemotherapy or radiation from the NKI295, University of California San Francisco, Radcliffe, and Stockholm data sets were used in an external validation study
for the TSP IRDS. For this, metastasis-free survival (MFS), for patients receiving chemotherapy, or local-regional control (LRC), for patients receiving radiation
therapy, were predicted from each data set using either an RSF (blue) or Cox (brown) model trained on the other three data sets. Shown are importance scores
of the indicated covariates for each data set when used as a test set (Stockholm, square; University of California San Francisco, circle; Radcliffe, triangle; NKI295,
cross).
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Fig. S7. Metaanalysis of the IRDS as a therapy-predictive marker for adjuvant chemotherapy and/or radiation. (A) All data sets used in validation were combined
with the NKI295, resulting in a merged set of 1,573 patients. This merged set was used in a metaanalysis to estimate means and SEs for the importance scores
of the indicated covariates for metastasis-free survival (MFS) and local-regional control (LRC) based on bootstrap resampling. For RSF, missing values were
imputed and a non-stratified model incorporating non-linear effects and multi-way interactions was used to extract treatment effect. In this way, cohort effects
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are shown.
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Table S1. Multivariable Cox proportional-hazards model of
distant metastasis for NKI295 breast cancer patients

Variable HR 95% CI P value

Chemotherapy 0.35 0.17–0.72 0.004
TSP IRDS, per point, 0–7 0.97 0.49–1.91 0.930
ER negative 1.82 0.83–3.98 0.140
Grade 2/3 3.98 1.53–10.40 0.005
Age, per y 0.94 0.89–1.00 0.045
Nodes positive, per node 1.20 1.08–1.34 0.001
Tumor size, per mm 1.04 1.01–1.07 0.021
TSP IRDS interaction with

Chemotherapy 1.20 1.00–1.43 0.050
ER negative 0.94 0.79–1.11 0.460
Grade 2/3 0.81 0.63–1.03 0.090
Age 1.01 0.99–1.02 0.330
Nodes positive 0.97 0.94–1.00 0.061
Tumor size 1.00 0.99–1.01 0.810

HR, hazard ratio.
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Table S2. Characteristics of the NKI295 breast cancer patients according to TSP IRDS score

Variable

TSP IRDS score

Total P value*0 1 2 3 4 5 6 7

Grade 0.001
1 43 8 8 4 3 4 3 2 75
2/3 73 26 17 10 14 13 17 50 220

ER status �0.001
Positive 104 29 15 11 13 10 11 33 226
Negative 12 5 10 3 4 7 9 19 69

Lymph nodes 0.40
Negative 62 20 8 6 11 10 10 24 151
Positive 54 14 17 8 6 7 10 28 144

Tumor size 0.068
T1 68 19 12 7 11 12 7 19 155
T2� 48 15 13 7 6 5 13 33 140

Age, y 0.89
�30 22 6 6 2 5 6 6 10 63
30–39 74 23 13 10 9 10 10 34 183
40–50� 20 5 6 2 3 1 4 8 49

*�2 test.
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Table S3. Characteristics of the NKI295 breast cancer patients stratified by adjuvant
chemotherapy and radiation

Variable
No chemotherapy

(n � 185)
Adjuvant chemotherapy

(n � 110) P value
Adjuvant RT

(n � 243)

Mean age, y 44.1 43.7 0.53 44.0
Mean size, cm 2.19 2.37 0.09 2.17
Grade 2/3, % 75.1 73.6 0.88 72.0
Node positive, % 21.6 94.5 �0.001 57.6
ER negative, % 25.9 19.1 0.23 22.2
Chemotherapy, % 0 100 44.0
Hormones, % 10.8 18.1 0.11 14.4

For categorical variables, P values were calculated by a �2 test, and for continuous variables P values were
calculated by either a Student t test or by a Wilcoxon rank-sum test for skewed data.
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Table S4. Multivariable Cox proportional-hazards model of LRF
for NKI295 patients treated with adjuvant radiation (n � 243)

Variable HR (95% CI) P value

IRDS, TSP IRDS �2 vs. �2 0.37 (0.17–0.80) 0.012
Grade 2/3 1.28 (0.52–3.12) 0.59
Age, per y 0.90 (0.85–0.96) 0.001
Nodes positive, per node 1.04 (0.86–1.26) 0.67
Tumor size, per mm 0.98 (0.94–1.03) 0.44
ER negative 1.23 (0.55–2.75) 0.62
Mastectomy 0.29 (0.09–0.91) 0.034
Adjuvant chemotherapy 1.08 (0.46–2.53) 0.87

HR, hazard ratio.
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Table S5. Patient characteristics for cohorts used in validation studies

Variable

Cohort A (n � 292)

Cohort B
(n � 277)

Cohort C
(n � 286)All patients

Adjuvant chemotherapy
(n � 140)

Adjuvant RT
(n � 242)

Mean age, y 54.4 49.2 55.7 64.2 53.9
Mean size, cm 2.58 2.80 2.50 2.55 2.32
Grade 2/3, % 86.8 92.8 86.1 78.1 96.4
Node positive, % 58.8 77.0 57.4 55.2 0
ER negative, % 31.0 39.3 28.8 1.9 26.9
Chemotherapy, % 47.9 100 37.2 0 0
Hormones, % 67.4 53.2 71.4 100 0
Radiation, % 82.9 64.3 100 NA NA

Cohort A includes the University of California San Francisco, Radcliffe, and Stockholm groups and was used to validate the IRDS as
a therapy predictive marker for adjuvant chemotherapy and/or radiation. Cohort B includes the Loi group and was used to test specificity
as a therapy predictive marker for DNA damaging agents. Cohort C includes the Rotterdam group and was used validate that the IRDS
is not a prognostic marker. NA � not available.
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Table S6. Univariate Cox proportional-hazards model of
recurrence-free survival for patients receiving adjuvant
chemotherapy and/or RT in the NKI295 data set and three
validation data sets.

Data set HR (per point, 0–7) 95% CI P value

NKI, n � 246 1.11 1.04–1.19 0.002
Radcliffe, n � 84 1.24 1.07–1.43 0.003
UCSF, n � 119 1.16 0.994–1.34 0.060
Stockholm, n � 89 1.18 1.00–1.40 0.047

HR, hazard ratio; UCSF, University of California San Francisco.
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Table S7. Patient characteristics for each breast cancer data set used in cross-validation
studies

Variable NKI Radcliffe UCSF Stockholm

Chemotherapy
No. of patients 110 32 78 30
Mean age, y 43.7 49.3 49.9 47.3
Mean tumor size, cm 2.37 3.07 2.82 2.45
Grade 2/3, % 73.6 96.9 93.5 86.7
Node positive, % 94.5 84.4 68.8 90.0
ER negative, % 19.1 59.4 41.0 13.3
Hormones, % 18.2 68.8 44.2 60.0
Radiation, % 97.3 87.5 56.4 60.0
CMF, % 98.2 90.6 80.0
Anthracycline-containing, % 1.8 9.4 �primarily� 20.0

Radiation
No. of patients 243 80 85 77
Mean age, y 44 56 55.1 55.9
Mean tumor size, cm 2.17 2.75 2.57 2.17
Grade 2/3, % 72.0 85.0 91.7 80.8
Node positive, % 57.6 57.5 55.3 59.7
ER negative, % 22.2 35.0 32.5 18.2
Hormones, % 14.4 81.3 58.3 75.3
Chemotherapy, % 44.0 35.0 51.8 23.4

CMF, cyclophosphamide/methotrexate/5-fluorouracil; UCSF, University of California San Francisco.
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Table S8. Microarray data sets used in this study by cancer type
and alias for the data set referred to in the study

Cancer type Alias No. of samples Reference(s)

Breast NKI78 78 16
Breast NKI295 295 1
Breast UCSF 175 17,18
Breast Stockholm 159 19
Breast Radcliffe 99 20
Breast Rotterdam 286 21
Breast MGH 60 22
Breast KJ125 125 23
Breast Loi 277 24
Breast TRANSBIG 198 25
Head and neck – 60 26
Lung – 86 27
Prostate – 78 28
High-grade glioma – 185 29,30
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Table S9. Probe identifiers for 49 IRDS genes by gene symbol

Gene symbol Affymetrix probe set ID NKI unique ID Chung unique ID

ALDH3A1 205623�at NM�000691 10605
BST2 201641�at NM�004335 NA
CA2 209301�at NM�000067 7901
CCNA1 205899�at NM�003914 5249
CD59 212463�at NM�000611 14065
CXCL1 204470�at NM�001511 7799
CXCL10 204533�at NM�001565 5020
DAZ1 216922�x�at AF248480 9882
DCN 201893�x�at NM�001920 11778
FLJ20035 218986�s�at NM�017631 NA
FLJ38348 213294�at NA NA
G1P2 205483�s�at NM�005101 5740
G1P3 204415�at NM�002038 16530
GALC 204417�at NM�000153 NA
HERC6 219352�at NM�017912 15099
HLA-B 208729�x�at NM�005514 9374
HLA-G 211529�x�at NM�002127 6816
HSD17B1 205829�at NM�000413 7619
IFI27 202411�at NM�005532 9130
IFI35 209417�s�at U72882 8878
IFI44 214453�s�at NM�006417 5973
IFI44L 204439�at NM�006820 15590
IFIT1 203153�at NM�001548 NA
IFIT3 204747�at NM�001549 10164
IFITM1 201601�x�at NM�003641 15086
IGF2 202409�at NA NA
IRF7 208436�s�at NM�004029 10241
LAMP3 205569�at NM�014398 NA
LGALS3BP 200923�at NM�005567 12963
LY6E 202145�at NM�002346 7243
MCL1 200798�x�at L08246 4944
MX1 202086�at NM�002462 8263
MX2 204994�at NA 7039
OAS1 205552�s�at NM�016816 17219
OAS3 218400�at NM�006187 NA
OASL 205660�at NA NA
PLSCR1 202446�s�at AB006746 6639
RAP2C 218669�at NM�021183 314
ROBO1 213194�at NM�002941 5321
SERPINB2 204614�at NM�002575 16572
SH3YL1 204019�s�at NM�015677 5324
SLC6A15 206376�at NM�018057 3904
STAT1 209969�s�at NM�007315 NA
THBS1 201110�s�at NM�003246 6554
TIMP3 201150�s�at NM�000362 17867
TncRNA 214657�s�at U60873 3830
TRIM14 203148�s�at NM�014788 9634
USP18 219211�at NA 7801
ZNF273 215239�x�at X78932 11704

The Affymetrix U133A platform was used in the prostate, lung, and glioma data sets and the probe set identifiers are shown. Also shown are the unique
identifiers for the microarray platforms used for the NKI78 breast cancer data set and the head and neck data set of Chung et al. (ref. 26 in SI Text). NA, no
corresponding probes.
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Table S10. shRNAmir sequences for IRDS gene targeting. The targeting sequence for each of the indicated genes is shown

NS, non-silencing control sequence.
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